

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

Sodium phosphate monobasic monohydrate ACS Reagent

Product Number S 9638
Store at Room Temperature
Exact replacement for Product Code 22,352-2

Product Description

Molecular Formula: NaH₂PO₄ • H₂O

Molecular Weight: 138.0 CAS Number: 10049-21-5

This product is designated as ACS Reagent grade, and meets the specifications of the American Chemical Society (ACS) for reagent chemicals.

Sodium phosphate is a reagent with very high buffering capacity that is widely used in molecular biology, biochemistry, and chromatography. Sodium phosphate occurs in several forms: monobasic (NaH2PO4), dibasic (Na2HPO4), and tribasic (Na3PO4). Most neutral sodium phosphate buffer solutions consist of mixtures of the monobasic and dibasic forms to varying degrees, depending on the desired pH. A table for preparation of 0.1 M sodium phosphate buffer at 25 °C using various proportions of sodium phosphate monobasic and sodium phosphate dibasic has been published. ¹

Some limitations of the usefulness of phosphate buffers include their precipitation of Ca²⁺ and Mg²⁺, their inhibition of restriction enzyme activity, and their interference in protocols related to DNA ligation and bacterial transformation. A study of the effect of freeze-thaw storage cycles on proteins in sodium phosphate and potassium phosphate buffer solutions has been reported. The effect of 5 mM sodium phosphate on the efficacy of electrospray ionization (ESI) ion mobility spectrometry (IMS) analysis has been evaluated.

A protocol for the purification of pyrogen-free mouse IgG1 monoclonal antibodies which uses 10 mM sodium phosphate (pH 7.4) has been published. An ion-pairing HPLC method for the analysis of 5-aminosalicylic acid has been reported. A TLC method for separation of nucleotide sugars in the study of glycosyltransferase activity has been published.

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Preparation Instructions

This product is soluble in water (100 mg/ml), yielding a clear, colorless solution.

References

- Molecular Cloning: A Laboratory Manual, 3rd ed., Sambrook, J. F., et al., Cold Spring Harbor Laboratory Press (Cold Spring Harbor, NY: 2001), p.A1.5.
- 2. Pikal-Cleland, K.A., et al., Protein denaturation during freezing and thawing in phosphate buffer systems: monomeric and tetrameric betagalactosidase. Arch. Biochem. Biophys., **384(2)**, 398-406 (2000).
- Matz, L.M., et al., Evaluation of capillary liquid chromatography-electrospray ionization ion mobility spectrometry with mass spectrometry detection. J. Chromatogr. A., 946(1-2), 59-68 (2002).
- Neidhardt, E.A., Rapid, two-step purification process for the preparation of pyrogen-free murine immunoglobulin G1 monoclonal antibodies.
 Chromatogr., 590(2), 255-261 (1992).
- Kersten, B.S., et al., lon-pairing high-performance liquid chromatographic method for the determination of 5-aminosalicylic acid and related impurities in bulk chemical. J. Chromatogr., 588(1-2), 187-193 (1991).
- Ram, P.A., et al., Thin-layer chromatographic method for the determination of glycosyltransferase activity. Anal. Biochem., 178(2), 421-426 (1989).
- 7. The Merck Index, 12th ed., Entry# 8806.

GCY/NSB 5/06